Table of Contents

Specifications .. 3
Provided Equipment .. 3
Terminal Designations .. 4
Installation ... 6
Installation Process .. 10
Mounting .. 12
Wireless Module .. 13

Conventional Wiring Diagrams
 Conventional System ... 15
 Conventional System with Four Stages 16
 Conventional System with Five Stages 18
 Conventional System with Six Stages .. 20
 Conventional System with Bypass ... 22
 Conventional System with Bypass and Economizer 23
 Conventional System with Variable Speed Fan (VFD) 24
 Conventional System with Variable Speed Fan (VFD) and Economizer .. 25
 Conventional System with Economizer 26

Heat Pump Wiring Diagrams
 Heat Pump .. 27
 Heat Pump with Bypass ... 28
 Heat Pump with Bypass and Economizer 29
 Heat Pump with Variable Speed Fan (VFD) 30
 Heat Pump with Variable Speed Fan (VFD) and Economizer 31
 Heat Pump with Economizer ... 32

Boiler Wiring Diagram .. 33
Setup and Configuration .. 34
Troubleshooting .. 37

GENERAL
The Pelican zone control solution uses strategic logic and built-in learning algorithms to properly condition spaces or areas of diverse load. The zone controller uses sensors and software to monitor temperatures and duct pressure to intelligently navigate complex building environments. The zone controller is a pressure dependent device that maintains space temperature by modulating the amount of supply airflow brought into different spaces. To aid in decision making, space or zone temperatures and total building load is continuously monitored and wirelessly communicated to the zone controller from Pelican thermostats installed through-out the building. During times when zones are being conditioned, rate of temperature change relative to set point is monitored and logic is dynamically adjusted. This data allows the zone controller to satisfy the temperature and ventilation requirements for each zone in a timely and energy efficient manner.

PRE-INSTALLATION CONSIDERATIONS
Before installing any zoning system forethought and planning should take place to identify which type of HVAC equipment the Z24 will be controlling, how many stages the equipment has, how many zones are going to be conditioned, and what the square footage of each zone is for the size of the HVAC equipment. Because the Z24 uses wireless communication, plan installation locations appropriately for each Pelican device. Contact Pelican Support at 888.512.0490 for further assistance.
SPECIFICATIONS

Electrical

Power ... 24 VAC
Relay Current .. 1 AMP @ 24V
Variable Output .. 0-10 VDC
Thermistor Input .. 10K Type II
Pressure Range ... 0 – 9” WC

PROVIDED EQUIPMENT

Z24 Controller

Wireless Module

20 Feet 1/8” Plastic Tubing

(1) Static Pressure Sensor

(2) 0.25” diameter 10K Type II Duct Probes

(1) Electrical Box Gasket

(4) 3/16” Machine Screws (Wireless Module Mounting)

(1) 10K Type II Outdoor Temp. Probe

(2) 3/16” Sheet Metal Screws (Z24 Mounting)
HVAC UNIT CONTROL (24VAC Digital Outputs)

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Heat Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>W2</td>
<td>W2</td>
</tr>
<tr>
<td>Y2</td>
<td>Y2</td>
</tr>
<tr>
<td>G2</td>
<td>G2</td>
</tr>
<tr>
<td>W3</td>
<td>W3</td>
</tr>
<tr>
<td>Y3</td>
<td>Y3</td>
</tr>
</tbody>
</table>

- **Conventional**: Compressor Output 1, Heat Output 1, Fan Energize, Heat Output 2, Compressor Output 2, Exhaust Fan Energize, Heat Output 3, Compressor Output 3
- **Heat Pump**: Compressor Stage 1, (O/B) Reversing Valve, Fan Energize, (AUX) Electric Heat, Compressor Stage 2, Exhaust Fan Energize, (Not Used), Compressor Stage 3

ELECTRICAL CONNECTIONS

<table>
<thead>
<tr>
<th>C</th>
<th>R</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>R</td>
<td>D</td>
</tr>
</tbody>
</table>

- **C**: Common 24 VAC
- **R**: 24 VAC Power
- **D**: Data

0-10VDC INPUTS/OUTPUTS

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>A1</td>
<td>A2</td>
</tr>
</tbody>
</table>

- **S1**: 0-10 VDC input
- **S2**: 0-10 VDC input
- **A1**: 0-10 VDC output
- **A2**: 0-10 VDC output

STATIC PRESSURE SENSOR

<table>
<thead>
<tr>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

- **High**: Duct Pressure
- **Low**: Outside/Ambient Pressure

10K ANALOG INPUTS

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
</tbody>
</table>

- **T1**: Input Terminal
- **T2**: Input Terminal
- **T3**: Input Terminal

Note:

"T" Terminals can accept either Type 2 10K temperature probe or a Dry Contact Sensor input to send an alarm notification through your Pelican Site Manager.
WHEN INSTALLING THIS PRODUCT...

1. Read these instructions carefully and thoroughly. Failure to follow these instructions or improper installation, service, adjustments, maintenance, and/or use can result in personal injury, damage to personal property, and/or cause a hazardous and dangerous situation.
2. Check the ratings and description given in this specification to make sure the product is suitable for your application.
3. Installer must be a trained and experienced technician. Follow all safety codes and regulations and all local and state building codes. Read instructions thoroughly and follow all warnings or notes.
4. After installation is complete, check product operation as provided in these instructions.

⚠️ CAUTION

1. Disconnect power supply before connecting any wiring to device to prevent electrical shock or damage to equipment.
2. This guide is designed for certified, trained, and experienced service technicians. Failure to follow installation instructions does not alleviate installer responsibility to protect the equipment and property device is being connected too. If at anytime there becomes concern or confusion about how to install or use this device, immediately stop what you are doing and either contact Pelican Wireless Systems or a Pelican Wireless System’s distributor.

⚠️ WARNING

1. This equipment is designed to communicate over radio frequency to other Pelican equipment only. If this equipment is not installed and used in accordance with the instruction manual, you may experience wireless interference. This device has been tested and complies with FCC rules and regulations.

LOCATION AND MOUNTING

Location

Choose a location for the Z24 that is not exposed to weather, and where controls and connections are accessible. The Wireless Module can be removed from the Z24 and is waterproof if installed onto a plastic electrical box with the provided gasket placed in-between (Reference Page 13). Gasket is required to create a water tight seal between Wireless Module and plastic electrical box (Reference Page 14).

⚠️ CAUTION

Always remove the Wireless Module if the Z24 is installed enclosed in metal (e.g. inside the HVAC unit). The Wireless Module will not be able to communicate if metal is blocking its signal.
Fig. 2 – Typical mounting at HVAC unit.

Fig. 3 – Typical single duct system with bypass and economizer.
Fig. 4 – Typical single duct system with VFD and economizer.

OUTSIDE AIR HANDLER

WIRELESS ANTENNA

RETURN AIR PROBE

RETURN DUCT

AIRFLOW

OUTSIDE AIR DAMPER

OUTSIDE AIR PROBE

INSIDE AIR HANDLER

Economizer

SUPPLY DUCT

SUPPLY AIR PROBE

DUCT STATIC PROBE

VARIABLE SPEED BLOWER

Fig. 5 – Typical dual duct system with VFD and economizer.

Z24 (HOT DECK)

Z24 (COLD DECK)

RETURN AIR PROBE

RETURN AIR

AIRFLOW

OUTSIDE AIR PROBE

OUTSIDE AIR DAMPER

Economizer

HOT DECK SUPPLY

COLD DECK SUPPLY

VARIABLE SPEED BLOWER

DUCT STATIC PROBE

SUPPLY AIR PROBE

SUPPLY DUCT

SUPPLY AIR PROBE
Fig. 6 – Typical dual duct system with VFD, economizer, and boiler for hot deck.

WARNING
If installing the Wireless Module outside, make sure it is installed onto a PLASTIC electrical box. Make sure a proper seal is created between the Wireless Module, the provided gasket, and the contact edge of the plastic electrical box.

CAUTION
Always remove the Wireless Module if the Z24 is installed enclosed in metal (i.e.: inside the HVAC unit). The Wireless Module will not be able to communicate if metal is blocking its signal.

WARNING
If installing the Wireless Module outside, make sure it is installed onto a PLASTIC electrical box. Make sure a proper seal is created between the Wireless Module, the provided gasket, and the contact edge of the plastic electrical box.
INSTALLATION PROCESS

1. Remove the Z24 front cover by placing two fingers into indents along both sides of the controller. Front cover should pull away from back panel with a small amount of upward force. This will expose the terminal blocks, mounting holes, and wireless module.

2. Place the Z24 back plate on a flat surface for mounting. Mark mounting holes and drill 3/16” holes into mounting surface (Reference Page 12 Figure 7). Note the provided wiring channels. There is also a channel for the static pressure tubing.

3. If the Z24 is installed inside the HVAC unit or is enclosed in metal, the wireless module will need to be removed from the Z24 and installed either below the roof-line or outside the HVAC unit on a plastic weatherproof electrical box (Reference Pages 13 and 14 Figures 8 and 9). The Z24 Wiring Guides are laid out as follows:

 - Page 13: Fig. 8 shows wiring the Wireless Module to the Z24.
 - Page 14: Fig. 9 shows installing the Wireless Module on a plastic weatherproof electrical box.
 - Page 15: Fig. 10 shows the Z24 wired to a Conventional HVAC unit.
 - Page 16: Fig. 11 shows the Z24 wired to a Conventional HVAC unit with Four Stages.
 - Page 17: Fig. 12 shows a detailed diagram for a Z24 to a Conventional HVAC unit with Four Stages.
 - Page 18: Fig. 13 shows the Z24 wired to a Conventional HVAC unit with Five Stages.
 - Page 19: Fig. 14 shows a detailed diagram for a Z24 to a Conventional HVAC unit with Five Stages.
 - Page 20: Fig. 15 shows the Z24 wired to a Conventional HVAC unit with Six Stages. (Page 20)
 - Page 21: Fig. 16 shows a detailed diagram for a Z24 to a Conventional HVAC unit with Six Stages.
4. Once the Z24 is installed and wired to the HVAC unit, follow the configuration sections starting on Page 28. The Z24 Configuration Sections shows configuration options for the Z24 as follows:

 Step 1: Pelican Web App (Page 34)
 Step 2: Z24 Serial Number (Page 34)
 Step 3: System Configuration Options (Page 34)
 Step 4: Static Management Configuration Options (Page 35)
 Step 5: Economizer Configuration Options (Page 35)
 Step 6: Boiler Control Configuration Options (Page 36)
 Step 7: Input Sensors Configuration Options (Page 36)

5. Install the zone thermostats by following the Zone Damper Installation Guide (if not already completed) which was provided with the Z24.

6. Use the provided Check-Out and Verification Document provided with the Z24 to confirm proper operation of the equipment and the zoned solution.
Z24 mounting dimensions (inches).

Wireless Module mounting dimensions (inches).

Fig. 7
WARNING

The following Operation and Application diagrams are to be used as reference to the most common application where the Z24 will be installed to control specific HVAC systems. For dual ducted applications, two Z24s will need to be installed. One for the hot deck and the other for the cold deck (reference Fig 4.3 and 4.4). In the case the system you are connecting the Z24 to is not defined in this installation guide. Contact Pelican Technical Support for assistance at 888-512-0490 or email support@pelicanwireless.com.

Wiring the Z24 to the Wireless Module (if removed from Z24 base)

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1. POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED.

2. POWER TO Z24 AND WIRELESS MODULE IS 24VAC. SIZE TRANSFORMER AS NEEDED.

3. WIRE CONNECTING THE WIRELESS MODULE TO THE Z24 CAN BE STANDARD UNSHIELDED COPPER THERMOSTAT WIRE UP TO 500 FEET.

Fig. 8
Fig. 6 – (Optional) Installing Wireless Module on Plastic Outdoor Electrical Box Outside of HVAC unit.

1. USE PROVIDED (4) 3/16” MACHINE SCREWS FOR MOUNTING WIRELESS MODULE ONTO RATED OUTDOOR ELECTRICAL BOX.

2. WIRELESS MODULE IS MOUNTED HORIZONTALLY. DEVICE IS WATERPROOF WHEN PROPERLY INSTALLED WITH GASKET IN BETWEEN AN OUTDOOR RATED PLASTIC ELECTRICAL BOX. LOGO SHOULD BE LEGIBLE WHEN MOUNTED PROPERLY.

3. MOUNT PROVIDED GASKET BETWEEN WIRELESS MODULE AND PLASTIC ELECTRICAL BOX. VERIFY THAT SEAL IS COMPLETE AROUND ENTIRE EDGE OF WIRELESS MODULE.

4. ELECTRICAL BOX MUST BE PLASTIC AND PLACED OUTSIDE OF METAL ENCLOSURES. ELECTRICAL BOX MUST BE OUTDOOR RATED AND WEATHERPROOF.

5. THREE WIRE BETWEEN WIRELESS MODULE AND Z24 CAN BE STANDARD UNSHIELDED COPPER THERMOSTAT WIRE UP TO 500 FEET (REF. PAGE 13 FIGURE 8).

6. NOTE: ELECTRICAL BOX IS NOT REQUIRED WHEN MOUNTING WIRELESS MODULE INSIDE OF THE BUILDING OR IF INSTALLED WHERE THE WIRELESS MODULE IS PROTECTED FROM THE WEATHER.
Conventional Wiring Guide

The following wiring diagram is for a conventional system.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE: PAGE 16 FOR FOUR STAGES, PAGE 17 FOR FIVE STAGES, PAGE 18 FOR SIX STAGES.

1. **COMMONS ARE INTERNALLY INTERCONNECTED**

2. **FOR DUAL DUCT APPLICATIONS, INSTALL ONE Z24 TO MANAGE THE COLD SYSTEM AND A SECOND Z24 TO MANAGE THE HEAT SYSTEM (AS SHOWN ON PAGE 8 FIGURE 5). IF THERE IS A SINGLE FAN, ONLY CONNECT ONE OF THE Z24 CONTROLLERS TO ENERGIZE THE FAN. CONTACT PELICAN TECHNICAL SUPPORT FOR FURTHER ASSISTANCE AT 888-512-0490 OR SUPPORT@PELICANWIRELESS.COM**

1. **YW/G/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.**

2. **POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.**

3. **INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.**

4. **USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.**

5. **T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.**

Fig. 10

REFERENCE: PAGE 16 FOR FOUR STAGES, PAGE 17 FOR FIVE STAGES, PAGE 18 FOR SIX STAGES.
The following wiring diagram is for a conventional system with 4 stages of cooling and 4 stages of heating.

Conventional Wiring Guide (4 Stages of Control)

REFERENCE PAGE 17 FOR A DETAILED WIRING DIAGRAM.

REFERENCE: PAGE 18 FOR FIVE STAGES AND PAGE 20 FOR SIX STAGES.

- **Cool Output 1**
- **Heat Output 1**
- **Fan Energize Output**
- **Heat Output 2**
- **Cool Output 2**
- **Heat Output 3**
- **Cool Output 3**

COMMONS ARE INTERNALLY INTERCONNECTED

FOR DUAL DUCT APPLICATIONS, INSTALL ONE Z24 TO MANAGE THE COLD SYSTEM AND A SECOND Z24 TO MANAGE THE HEAT SYSTEM (AS SHOWN ON PAGE 8 FIGURE 5). IF THERE IS A SINGLE FAN, ONLY CONNECT ONE OF THE Z24 CONTROLLERS TO ENERGIZE THE FAN. CONTACT PELICAN TECHNICAL SUPPORT FOR FURTHER ASSISTANCE AT 888-512-0490 OR SUPPORT@PELICANWIRELESS.COM

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY Sized RELAYS, CONTRACTORS, OR TWELNING KITS AS NEEDED.

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE COMPRESSORS

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y2</td>
<td>Y2</td>
<td>Y3</td>
</tr>
</tbody>
</table>

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE HEAT

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W2</td>
<td>W2</td>
<td>W3</td>
</tr>
</tbody>
</table>

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 11
Detailed Conventional Wiring Guide (4 Stages of Control)

The following is a detailed wiring diagram for a conventional system with 4 stages of cooling and 4 stages of heating.

- **NOTE:** STAGING ALGORITHM IS EXPLAINED ON PREVIOUS PAGE. THIS DOCUMENT IS DESIGNED TO DEMONSTRATE HOW TO DIRECTLY WIRE THE Z24 TO THE MAIN START/STOP CONTACTORS OF THE COOLING AND HEATING STAGES FOR AN HVAC UNIT.

- **Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM.**

- **PROVIDE PROPERLY SIZED NORMALLY-OPEN ISOLATION RELAYS AS NEEDED.**

- **TWIN BOTH STAGES TOGETHER USING MULTIPLE NORMALLY-OPEN ISOLATION RELAYS AS NEEDED.**

- **INCOMING LINE VOLTAGE.**

- **POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMER AS NEEDED.**

- **VERIFY ALL REQUIRED MECHANICAL SAFETIES ARE IN PLACE AND ACTIVE.**

Fig. 12
Conventional Wiring Guide (5 Stages of Control)

The following wiring diagram is for a conventional system with 5 stages of cooling and 5 stages of heating.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE PAGE 19 FOR A DETAILED WIRING DIAGRAM.
REFERENCE: PAGE 16 FOR FOUR STAGES AND PAGE 20 FOR SIX STAGES.

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS AS NEEDED.

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE COMPRESSORS

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
<th>FIVE STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y2</td>
<td>Y2</td>
<td>Y2</td>
<td>Y</td>
</tr>
<tr>
<td>Y3</td>
<td>Y3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE HEAT

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
<th>FIVE STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W2</td>
<td>W2</td>
<td>W2</td>
<td>W3</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td>W3</td>
<td>W3</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCE PAGE 19 FOR A DETAILED WIRING DIAGRAM.
REFERENCE: PAGE 16 FOR FOUR STAGES AND PAGE 20 FOR SIX STAGES.

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 13

18
Detailed Conventional Wiring Guide (5 Stages of Control)

The following is a detailed wiring diagram is for a conventional system with 5 stages of cooling and 5 stages of heating.

NOTE: STAGING ALGORITHM IS EXPLAINED ON PREVIOUS PAGE. THIS DOCUMENT IS DESIGNED TO DEMONSTRATE HOW TO DIRECTLY WIRE THE Z24 TO THE MAIN START/STOP CONTACTORS OF THE COOLING AND HEATING STAGES FOR AN HVAC UNIT.

Pressure

COMMONS ARE INTERNALLY INTERCONNECTED

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM.

PROVIDE PROPERLY SIZED NORMALLY-OPEN ISOLATION RELAYS AS NEEDED.

TWIN BOTH STAGES TOGETHER USING MULTIPLE NORMALLY-OPEN ISOLATION RELAYS AS NEEDED.

INCOMING LINE VOLTAGE.

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMER AS NEEDED.

VERIFY ALL REQUIRED MECHANICAL SAFETIES ARE IN PLACE AND ACTIVE.

Fig. 14
Conventional Wiring Guide (6 Stages of Control)

The following wiring diagram is for a conventional system with 6 stages of cooling and 6 stages of heating.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE PAGE 21 FOR A DETAILED WIRING DIAGRAM.
REFERENCE: PAGE 16 FOR FOUR STAGES AND PAGE 18 FOR FIVE STAGES.

TRANSFORMER

L2
L1 (HOT)

24VAC

24VAC

SUPPLY DUCT

STATIC PROBE

AMBIENT AIR

OUTSIDE AIR

RETURN AIR

SUPPLY AIR

T1 T2 T3

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS AS NEEDED.

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE COMPRESSORS

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
<th>FIVE STAGES</th>
<th>SIX STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y2</td>
<td>Y3</td>
<td>Y</td>
<td>Y2</td>
<td>Y3</td>
</tr>
</tbody>
</table>

HOW OUTPUTS ARE ENERGIZE FOR STAGING THE HEAT

<table>
<thead>
<tr>
<th>ONE STAGE</th>
<th>TWO STAGES</th>
<th>THREE STAGES</th>
<th>FOUR STAGES</th>
<th>FIVE STAGES</th>
<th>SIX STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W2</td>
<td>W3</td>
<td>W</td>
<td>W2</td>
<td>W3</td>
</tr>
</tbody>
</table>

Fig. 15
The following is a detailed wiring diagram for a conventional system with 5 stages of cooling and 5 stages of heating.

NOTE: STAGING ALGORITHM IS EXPLAINED ON PREVIOUS PAGE. THIS DOCUMENT IS DESIGNED TO DEMONSTRATE HOW TO DIRECTLY WIRE THE Z24 TO THE MAIN START/STOP CONTACTORS OF THE COOLING AND HEATING STAGES FOR AN HVAC UNIT.

- **Y/W/G/W2/Y2/G2/W3/Y3 Outputs Are 24VAC @ 1A. Only connect the outputs required for your system.**
- **Provide properly sized normally-open isolation relays as needed.**
- **Combine stages together using multiple normally-open isolation relays as needed.**
- **Incoming line voltage.**
- **Power supply. Provide a disconnect means and overload protection as required. Power to equipment is 24VAC. Size transformer as needed.**
- **Verify all required mechanical safeties are in place and active.**

Fig. 16

21
NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE: PAGE 16 FOR FOUR STAGES, PAGE 17 FOR FIVE STAGES, PAGE 18 FOR SIX STAGES.

1. Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.

2. POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

3. A2 IS A 0-10VDC OUTPUT FOR MODULATING THE BYPASS ACTUATOR.

4. INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

5. USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

6. T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 17
Bypass And Economizer Wiring Guide (Conventional)
The following wiring diagram is for a conventional system with a bypass and economizer.

Note: Terminal designations are defined on page 5

Transformer

L2
L1 (Hot)
24VAC

Supply duct static probe

Ambient air

High
Low

Pressure

T1
T2
T3

Outside air
Return air
Supply air

Y/W/G/W2/Y2/G2/W3/Y3 outputs are 24VAC @ 1A. Only connect the outputs required for your system. Provide properly sized relays/contacts as needed.

Power supply. Provide a disconnect means and overload protection as required. Power to equipment is 24VAC. Size transformers as needed.

S1 is a 0-10VDC input for economizer actuator position feedback fault detection and diagnostics.

A1 is a 0-10VDC output for modulating the economizer actuator. A2 is a 0-10VDC output for modulating the bypass actuator.

Install static probe in supply/discharge air duct. Recommend installation of at least six (6) feet away from fan or any bends in duct work.

Used for ambient air pressure sensing. Some applications may require running additional tubing to the outside of HVAC unit.

T1/T2/T3 are 10K Type 2 temperature probe inputs. Supply and return air temperature probes are mandatory for proper operation.

For dual duct applications, install one Z24 to manage the cold system and a second Z24 to manage the heat system (as shown on page 8 Figure 5). If there is a single fan, only connect one of the Z24 controllers to energize the fan. Contact Pelican Technical Support for further assistance at 888-512-0490 or support@pelicanwireless.com

Reference: Page 16 for four stages, Page 17 for five stages, Page 18 for six stages.

Fig. 18
Variable Speed Fan Wiring Guide (Conventional)
The following wiring diagram is for a conventional system with a variable speed fan (VFD).

1. Variable Speed Fan (0-10VDC) outputs are 24VAC @ 1A. Only connect the outputs required for your system. Provide properly sized relays/contactors as needed.

2. Power supply. Provide a disconnect means and overload protection as required. Power to equipment is 24VAC. Size transformers as needed.

3. A1 is a 0-10VDC output for modulating the fan speed.

4. Install static probe in supply/discharge air duct. Recommend installation of at least six (6) feet away from fan or any bends in duct work.

5. Used for ambient air pressure sensing. Some applications may require running additional tubing to the outside of HVAC unit.

6. T1/T2/T3 are 10K Type 2 temperature probe inputs. Supply and return air temperature probes are mandatory for proper operation.

NOTE: Terminal designations are defined on Page 5

Reference: Page 16 for four stages, Page 17 for five stages, Page 18 for six stages.

For dual duct applications, install one Z24 to manage the cold system and a second Z24 to manage the heat system (as shown on Page 8 Figure 5). If there is a single fan, only connect one of the Z24 controllers to energize the fan. Contact Pelican Technical Support for further assistance at 888-512-0490 or support@pelicanwireless.com

Reference: Page 16 for four stages, Page 17 for five stages, Page 18 for six stages.

Fig. 19
Variable Speed Fan and Economizer Wiring Guide (Conventional)

The following wiring diagram is for a conventional system with a variable speed fan (VFD) and economizer.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE: PAGE 16 FOR FOUR STAGES, PAGE 17 FOR FIVE STAGES, PAGE 18 FOR SIX STAGES.

1 COMPRESSOR STAGE 1 RELAY
2 HEAT STAGE 1 RELAY
3 FAN ENERGIZE RELAY
4 HEAT STAGE 2 RELAY
5 COMPRESSOR STAGE 2 RELAY
6 EXHAUST FAN RELAY
7 HEAT STAGE 3 RELAY
8 COMPRESSOR STAGE 3 RELAY

TRANSFORMER

L2
L1 (HOT)
C
24VAC

3 ECONOMIZER (0-10VDC) POSITION FEEDBACK

4 VARIABLE SPEED FAN (0-10VDC)

5 ECONOMIZER (0-10VDC) ACTUATOR

6 SUPPLY DUCT STATIC PROBE

7 AMBIENT AIR

8 OUTSIDE AIR

9 RETURN AIR

10 SUPPLY AIR

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1 Y/W/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY Sized RELAYS/CONTACTORS AS NEEDED.

2 POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

3 S2 IS A 0-10VDC INPUT FOR ECONOMIZER ACTUATOR POSITION FEEDBACK FAULT DETECTION AND DIAGNOSTICS.

4 A1 IS A 0-10VDC OUTPUT FOR MODULATING THE FAN SPEED. A2 IS A 0-10VDC OUTPUT FOR MODULATING THE ECONOMIZER ACTUATOR.

5 INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

6 USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

7 T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 20
Economizer Wiring Guide (Conventional)

The following wiring diagram is for a conventional system with an economizer.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

REFERENCE: PAGE 16 FOR FOUR STAGES, PAGE 17 FOR FIVE STAGES, PAGE 18 FOR SIX STAGES.

FOR DUAL DUCT APPLICATIONS, INSTALL ONE Z24 TO MANAGE THE COLD SYSTEM AND A SECOND Z24 TO MANAGE THE HEAT SYSTEM (AS SHOWN ON PAGE 8 FIGURE 5). IF THERE IS A SINGLE FAN, ONLY CONNECT ONE OF THE Z24 CONTROLLERS TO ENERGIZE THE FAN. CONTACT PELICAN TECHNICAL SUPPORT FOR FURTHER ASSISTANCE AT 888-512-0490 OR SUPPORT@PELICANWIRELESS.COM

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

S2 IS A 0-10VDC INPUT FOR ECONOMIZER ACTUATOR POSITION FEEDBACK FAULT DETECTION AND DIAGNOSTICS.

A2 IS A 0-10VDC OUTPUT FOR MODULATING THE ECONOMIZER ACTUATOR.

INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 21
Heat Pump Wiring Guide

The following wiring diagram is for heat pump control.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1. Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.

2. POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

3. INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

4. USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

5. T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 22
Bypass Wiring Guide (Heat Pump)

The following wiring diagram is for a heat pump with a bypass.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1. **Y/W/G/W2/Y2/G2/W3/Y3** OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.

2. POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

3. **A2** IS A 0-10VDC OUTPUT FOR MODULATING THE BYPASS ACTUATOR.

4. INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

5. USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

6. **T1/T2/T3** ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 23

28
Bypass and Economizer Wiring Guide (Heat Pump)

The following wiring diagram is for a heat pump with a bypass and economizer.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

![Diagram of Bypass and Economizer Wiring Guide (Heat Pump)]

1. **Compressor Stage 1 Relay**
2. **Reversing Valve (O/B) Relay**
3. **Fan Energize Relay**
4. **Auxiliary Heat Relay**
5. **Compressor Stage 2 Relay**
6. **Exhaust Fan Relay**
7. **Compressor Stage 3 Relay**

Transformer
- L2
- L1 (HOT)
- 24VAC

Economizer (0-10VDC) Position Feedback
- S1
- S2
- C

Economizer (0-10VDC) Actuator Input
- A1
- C

Bypass (0-10VDC) Actuator Input
- A2

Supply Duct Static Probe

Ambient Air

Pressure
- T3
- T2
- T1

Outside Air
Return Air
Supply Air

Note:
- Y/W/G/W2/Y2/G2/W3/Y3 outputs are 24VAC @ 1A. Only connect the outputs required for your system. Provide properly sized relays/contactors as needed.
- Power supply. Provide a disconnect means and overload protection as required. Power to equipment is 24VAC. Size transformers as needed.
- S1 is a 0-10VDC input for economizer actuator position feedback fault detection and diagnostics.
- A1 is a 0-10VDC output for modulating the economizer actuator. A2 is a 0-10VDC output for modulating the bypass actuator.
- Install static probe in supply/discharge air duct. Recommend installation of at least six (6) feet away from fan or any bends in duct work.
- Used for ambient air pressure sensing. Some applications may require running additional tubing to the outside of HVAC unit.
- T1/T2/T3 are 10K type 2 temperature probe inputs. Supply and return air temperature probes are mandatory for proper operation.

Warning:
- If an exhaust fan is installed and needs to be energized during economization, connect the (G2) 24VAC output to the exhaust fan. Provide properly sized relay/contactors as needed.

Fig. 24
Variable Speed Fan Wiring Guide (Heat Pump)
The following wiring diagram is for a heat pump with a variable speed fan (VFD).

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1. Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.
2. POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.
3. A1 IS A 0-10VDC OUTPUT FOR MODULATING THE FAN SPEED.
4. INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.
5. USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.
6. T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

Fig. 25
Variable Speed Fan and Economizer Wiring Guide (Heat Pump)

The following wiring diagram is for a heat pump with a variable speed fan (VFD) and economizer.

Note: Terminal designations are defined on page 5

- Pressure
- OUTSIDE AIR
- RETURN AIR
- SUPPLY AIR
- AMBIENT AIR
- COMMONS ARE INTERNALLY INTERCONNECTED

Y/W/G/W2/Y2/G2/W3/Y3 outputs are 24VAC @ 1A. Only connect the outputs required for your system. Provide properly sized relays/contactors as needed.

Power supply, provide a disconnect means and overload protection as required. Power to equipment is 24VAC. Size transformers as needed.

S2 is a 0-10VDC input for Economizer Actuator position feedback fault detection and diagnostics.

A1 is a 0-10VDC output for modulating the fan speed. A2 is a 0-10VDC output for modulating the Economizer Actuator.

Install static probe in supply/discharge air duct. Recommend installation of at least six (6) feet away from fan or any bends in duct work.

Used for ambient air pressure sensing. Some applications may require running additional tubing to the outside of HVAC unit.

T1/T2/T3 are 10K Type 2 temperature probe inputs. Supply and return air temperature probes are mandatory for proper operation.

Use the (G) 24VAC output to energize the fan. Provide properly sized relay/contactors as needed.

If an exhaust fan is installed and needs to be energized during economization, connect the (G2) 24VAC output to the exhaust fan. Provide properly sized relay/contactors as needed.

Fig. 26
Economizer Wiring Guide (Heat Pump)

The following wiring diagram is for a heat pump with an economizer.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

1. COMPRESSOR STAGE 1 RELAY
 Y

2. REVERSING VALVE (O/B) RELAY
 W

3. FAN (SINGLE OR LOW SPEED) RELAY
 G

4. AUXILIARY HEAT RELAY
 W2

5. COMPRESSOR STAGE 2 RELAY
 Y2

6. EXHAUST FAN RELAY
 G2

7. COMPRESSOR STAGE 3 RELAY
 W3

8. ECONOMIZER (0-10VDC) ACTUATOR (COMMONS ARE INTERNALLY INTERCONNECTED)
 A1
 A2

9. Transformer
 24VAC

10. Exchanger
 L1 (HOT)
 L2

11. ECONOMIZER (0-10VDC) POSITION FEEDBACK
 Y/W/G/W2/Y2/G2/W3/Y3

12. SUPPLY DUCT STATIC PROBE

13. AMBIENT AIR

14. OUTSIDE AIR

15. RETURN AIR

16. SUPPLY AIR

Y/W/G/W2/Y2/G2/W3/Y3 OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY SIZED RELAYS/CONTACTORS AS NEEDED.

POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. SIZE TRANSFORMERS AS NEEDED.

S2 IS A 0-10VDC INPUT FOR ECONOMIZER ACTUATOR POSITION FEEDBACK FAULT DETECTION AND DIAGNOSTICS.

A2 IS A 0-10VDC OUTPUT FOR MODULATING THE ECONOMIZER ACTUATOR.

INSTALL STATIC PROBE IN SUPPLY/DISCHARGE AIR DUCT. RECOMMEND INSTALLATION OF AT LEAST SIX (6) FEET AWAY FROM FAN OR ANY BENDS IN DUCT WORK.

USED FOR AMBIENT AIR PRESSURE SENSING. SOME APPLICATIONS MAY REQUIRE RUNNING ADDITIONAL TUBING TO THE OUTSIDE OF HVAC UNIT.

T1/T2/T3 ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION.

IF AN EXHAUST FAN IS INSTALLED AND NEEDS TO BE ENERGIZED DURING ECONOMIZATION, CONNECT THE (G2) 24VAC OUTPUT TO THE EXHAUST FAN. PROVIDE PROPERLY SIZED RELAY/CONTACTORS AS NEEDED.

Fig. 27
The following wiring diagram is for energizing a boiler.

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

- **1** BOILER PUMP AND HOT WATER VALVE RELAY
- **2** BOILER PUMP AND HOT WATER VALVE RELAY
- **3** (OPTIONAL) BOILER ENABLE RELAY

Transformer

- L2
- L1 (HOT)
- 24VAC

Boiler Wiring Guide

1. **Y/W/G/W2/Y2/G2/W3/Y3** OUTPUTS ARE 24VAC @ 1A. ONLY CONNECT THE OUTPUTS REQUIRED FOR YOUR SYSTEM. PROVIDE PROPERLY Sized RELAYS/CONTRACTORS AS NEEDED.

2. **ON HEAT DEMAND (W)** WILL ENERGIZE THE PUMP(S) AND/OR VALVE(S).

4. **POWER SUPPLY. PROVIDE A DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED. POWER TO EQUIPMENT IS 24VAC. MULTIPLE TRANSFORMERS CAN BE USED. SIZE TRANSFORMERS AS NEEDED.**

5. **(OPTIONAL) INSTALL A PELICAN TA1 AND A 10K TYPE 2 TEMPERATURE PROBE DESIGNED AND RATED TO READ THE SUPPLY WATER TEMPERATURE OF THE BOILER. TEMPERATURE DETECTION RANGE -20 DEG. F TO 180 DEG. F. USE THE T3 TEMPERATURE INPUT INSTEAD OF A TA1, UNLESS THIS Z24 IS CONTROLLING AN ECONOMIZER.**

6. **T1/T2/T3** ARE 10K TYPE 2 TEMPERATURE PROBE INPUTS. SUPPLY AND RETURN AIR TEMPERATURE PROBES ARE MANDATORY FOR PROPER OPERATION. "USE THE T3 TEMPERATURE INPUT INSTEAD OF A TA1 TO DETECT BOILER SUPPLY WATER TEMPERATURE IF THERE IS NO ECONOMIZER."

NOTE: TERMINAL DESIGNATIONS ARE DEFINED ON PAGE 5

FOR DUAL DUCT APPLICATIONS, INSTALL ONE Z24 TO MANAGE THE COLD SYSTEM AND A SECOND Z24 TO MANAGE THE HEAT SYSTEM (AS SHOWN ON PAGE 9 FIGURE 6). IF THERE IS A SINGLE FAN, ONLY CONNECT ONE OF THE Z24 CONTROLLERS TO ENERGIZE THE FAN.

CONTACT PELICAN TECHNICAL SUPPORT FOR FURTHER ASSISTANCE AT 888-512-0490 OR SUPPORT@PELICANWIRELESS.COM

Fig. 28
PELICAN WEB APP

To configure a new Pelican Z24, navigate to your building’s Pelican Web App through any web browser (Google Chrome, Apple Safari, Microsoft Edge, etc.). All configuration is done through your Pelican Web App. To create a Pelican Web App you will need a Pelican Gateway (GW400). For further information on the Pelican Gateway (GW400) visit www.PelicanWireless.com.

SERIAL NUMBER

Each Pelican Z24 has a unique identification serial number. This serial number can be found on the front of the Z24’s Wireless Antenna. With the Serial Number recorded, find the new notification on your Pelican Web App which matches the serial number on the Z24’s Wireless Antenna. Press configure.

If no new notification is found, select Admin and identify if the new Z24 is on your Pelican Web App. If the Z24 is not found under Admin, then the Z24

SYSTEM CONFIGURATION OPTIONS

The following flow chart illustrates Z24 configuration options.
The following flow charts illustrate Z24 static configuration options.

STATIC MANAGEMENT CONFIGURATION OPTIONS

- **MINIMUM OPERATING SPEED**: Settable range 0% to 100% of maximum fan speed. Configure to the slowest fan speed allowed for proper operation of the mechanical equipment. Output: 0% = 0.0VDC 100% = 10.0VDC

- **TARGET OPERATING STATIC**: Settable range 0.0 inch WC to 3.0 inch WC. This sets the static pressure targeted when running a cooling or heating cycle.

- **TARGET CIRCULATION STATIC**: Settable range 0.0 inch WC to 3.0 inch WC. This sets the static pressure targeted when running a ventilation cycle.

- **MINIMUM STATIC**: Settable range 0.0 inch WC to 3.0 inch WC. This is a safety and will place the Z24 into an automatic reset if detected during a heating, cooling, or reheat cycle. Reset will de-energize any calls for heating, cooling, or reheat, but the call for fan will remain energized. The Z24 will restart the heating, cooling, or reheat cycle after ten minutes.

- **MAXIMUM STATIC**: Settable range 0.0 inch WC to 3.0 inch WC. This is a safety and will place the Z24 into an automatic reset if detected during a heating, cooling, reheat, or ventilation cycle. Reset will de-energize all calls. Z24 will restart heating, cooling, reheat, or ventilation cycle after ten minutes.

ECONOMIZER CONFIGURATION OPTIONS

- **HIGH LIMIT SHUT OFF**: Sets the warmest air allowed for economization. If left blank, the Z24 will auto-calculate the high limit shut off. Settable range of -20°F to 180°F.

- **ACTIVATION DIFFERENTIAL**: Requires the outside air temperature to be at least this many degrees below the return air temperature to be used for economization. Settable range 0°F to 6°F.

- **FIXED ENTHALPY**: Set to ON if the economizer should be disabled if the outside enthalpy levels exceeds 28 Btu/lb. (No enthalpy probe required to use).

If a Pelican Zone Thermostat with an integrated CO2 sensor is installed and you would like the Z24 to provide demand ventilation based on CO2, turn this feature ON.

- **DEMAND VENTILATION**: Set to ON if the economizer should be disabled if the outside enthalpy levels exceeds 28 Btu/lb. (No enthalpy probe required to use).
BOILER CONFIGURATION OPTIONS

By enabling boiler control you are instructing the Z24 to use (W2) as a boiler enable output. With this feature active, the Z24 will NOT energize (W) until it detects the boiler’s supply water temperature to be within a specified range. This feature requires the Z24 to be able to read the boiler’s hot water supply temperature. Reference the boiler installation guide on page 27 of this document and contact Pelican Technical Support for further assistance.

OPERATING RANGE

Set the temperature range that the Z24 should detect/maintain during a heating cycle. The Z24 will enable and disable its (W2) output to maintain this temperature range. Settable from -20°F to 180°F.

INPUT SENSOR CONFIGURATION OPTIONS

The following flowchart illustrates Z24 input sensor configuration options.

INPUT SENSOR T1, T2, T3

Each input has a default use, but can be configured for the function it is wired to detect.

FUNCTION

BOILER TEMPERATURE
SUPPLY TEMPERATURE
RETURN TEMPERATURE
OUTSIDE TEMPERATURE
ALARM
TEMP MONITOR

SAFE RANGE

A notification will be generated if this temperature is detected outside of this configured range. Settable range of -20°F to 180°F.

ALARM

Set to Alarm if a dry-contact output relay is connected to the terminal and you want to get an alarm if the contact changes to a specific position.

ALARM ACTIVE INDICATION

If set to [Closed] a notification will be generated on detection of the dry-contact relay closing. If set to [Open] a notification will be generated on detection of a dry-contact relay opening.
Troubleshoot Internet Status and Wireless Signals

Wireless Status:
- Off - Initializing
- 1 Second Blink - Establishing Wireless Connection
- Solid - Communicating Over Wireless

Internal Status:
- Off - No Power
- 1 Second Blink - Initializing
- Solid - Operational

Wireless Connection Identifier:
- Off - No Power
- 1 Second Blink - Establishing Wireless Connection
- Blink Every 15 sec - Communicating Over Wireless

TROUBLESHOOT Z24 CONTROL OUTPUTS

On your Pelican Site Manager you can test the signal outputs of the Z24 to provide immediate feedback that each of the Z24’s outputs are controlling the correct installed equipment.

These options let you manually turn on and off the control signals. It also allows you to dynamically adjust all 0-10VDC outputs for testing a variable speed fan, modulating bypass damper actuator, and modulating economizer damper. When testing 0-10VDC outputs set VFD, bypass and economizer control to "off".

IMPORTANT: The signal output control is a master override feature. Always make sure systems are off before activating a manual signal output adjustment. When finished testing set all outputs back to the position they were originally in.
THIS PAGE
INTENTIONALLY
LEFT BLANK